Tak Berkategori

Jawaban Buku Siswa Matematika Kelas 9 Latihan 5.2 Hal 293

November 16, 2019
562
Views

Kali ini kami akan membagikan latihan 5.2 kerucut. Materi dapat ditemukan pada buku paket matematika kelas 9. Soal ini terdiri dai 10 soal yag berbentuk uraian. Berikut jawaban buku siswa matematika kelas 9 latihan 5.2 halaman 293.

Latihan 5.2 Kerucut
1. Tentukan luas permukaan dan volume dari bangun kerucut berikut.

Jawaban:
a. luas = 16(1 + 10 )π cm2 d. luas = 224π cm2
volume = 64π cm3 volume = 392π cm3
b. luas = 96π cm2
 e. luas = 7 ( 7 + 4)π cm2

 volume = 96π cm3 volume = 7π cm3
c. luas = 12(3 + 34 )π cm2
f. luas = 90π cm2
 volume = 120π cm3
volume = 100π cm3

2. Tentukan panjang dari unsur kerucut yang ditanyakan.
Jawaban:
a. t = 9 m d. r = 9 dm
b. r = 6 m e. t = 175 cm
c. t = 6 cm f. t = 8 cm
3. Tumpeng. Pada suatu hari Pak Budi melakukan syukuran rumah baru. Pak Budi memesan suatu 8 cm tumpeng. Tumpeng tersebut memiliki diameter 36 cm dan tinggi 24 cm. Namun, diawal acara Pak Budi memotong bagian atas tumpeng tersebut secara mendatar setinggi 8 cm. Berapakah luas permukaan dan volume dari tumpeng yang tersisa?
Penyelesaian: Perhatikan gambar di bawah ini
Petunjuk: Bagian atas tumpeng yang dipotong juga berbentuk kerucut.
Berdasarkan kesebangunan: d2 = 36 × 8 24 = 12
Luas permukaan = luas alas tumpeng + luas alas potongan + luas selimut tumpeng – luas selimut potongan
 = π(18)2+ π(6)2 + π(18)(18 + 30) – π(6)(6 + 10)
 = 324π + 36π + 864π – 96π
                                = 1.128π cm2
Volume sisa = volume tumpeng – volume potongan = 1 3 π(18)2 × (24) – 1 3 π(6)2 × 8 = 2592π – 96π = 2.496π cm3

4. Suatu kerucut memiliki jari-jari 6 cm dan tinggi t cm. Jika luas permukaan kerucut adalah A cm2 dan volume kerucut adalah A cm3 maka tentukan: a. nilai dari t, b. nilai dari A.

5. Terdapat suatu bangun ruang yang diperoleh dari dua kerucut yang sepusat. Kerucut yang lebih besar memiliki jari-jari 10 cm dan tinggi 24 cm. Jari-jari kerucut kecil adalah ½ jari-jari kerucut besar. Tinggi kerucut kecil adalah ½ tinggi kerucut besar (lihat gambar di bawah)
Tentukan:
a. luas permukaan,
b. volume

Penyelesaian:
a. Luas permukaan = π(10)2– π(5)2+ π(10)(10 + 26) + π(5)(5 + 13)
= 100π – 25π + 360π + 90π
= 525π cm2
b. Volume = 1/3 π(10)2 × 24 – 1/3 π(5)2 × 12
= 800π – 100π = 700π cm3

6. Irisan Kerucut. Misalkan terdapat suatu kerucut dengan dengan jari-jari r cm dan panjang t cm. Kemudian kerucut tersebut dijadikan irisan kerucut dengan memotong kerucut tersebut menjadi dua bagian dari atas ke bawah (lihat gambar di samping). Tentukan rumus untuk menghitung luas irisan kerucut tersebut.
Jawaban:
Perhatikan gambar di samping
 L = 1/2 × luas permukaan kerucut + luas segitia ABC
= 1/2 πr(r + 2 2 r t + ) + rt

7. Analisis Kesalahan. Budi menghitung volume kerucut dengan diameter 10 cm dan tinggi 12 cm. Budi menghitung  V = 1/3 (12)2 (10) = 480. Sehingga diperoleh volume kerucut adalah 480 cm3 . Tentukan kesalahan yang dilakukan Budi.
Jawaban: Budi salah mensubstitusikan nilai r dan t, selain itu jari-jarinya adalah 10/2 = 5 cm

8. Dari kertas karton ukuran 1 m × 1 m Lisa akan membuat jaring-jaring kerucut dengan jari-jari r cm dan tinggi t cm.
a. Apakah Lisa bisa membuat jaring-jaring tersebut jika r = 40 cm dan t = 30 cm? Kemukakan alasanmu.
b. Apakah Lisa bisa membuat jaring-jaring tersebut jika r = 30 cm dan t = 40 cm? Kemukakan alasanmu.

Penyelesaian:
a. Luas kertas karton = 1 m2 = 10.000 cm2 Tidak bisa, dikarenakan luas jaring-jaring kerucut = π(40)(40 + 50) = 3.600π cm2 > 10.000 cm2
b. Perhatikan gambar di samping ini. Dari gambar di samping dapat dipastikan bahwa tidak mungkin dapat menggambar suatu juring dengan jari-jari 50 cm dan menempel lingkaran merah

9. Kerucut miring. Pada gambar di bawah terdapat dua buah bangun sisi lengkung. Gambar sebelah kiri merupakan kerucut dengan jari-jari r dan tinggi t. Gambar sebelah kanan merupakan bangun ruang sisi lengkung yang diperoleh dari kerucut sebelah kiri dengan menggeser alasnya ke sebelah kanan, selanjutnya disebut dengan kerucut miring. Kerucut miring tersebut memiliki jari-jari r dan tinggi t.
a. Tentukan suatu metode untuk mendapatkan rumus dari volume kerucut miring tersebut.
b. Apakah volume rumus kerucut miring sama dengan volume kerucut? Jelaskan analisismu.
Jawaban:
a. Salah satu metode adalah dengan membuat tumpukan koin yang membentuk kerucut miring.
b. Sama, karena kaidah volume adalah luas alas dikalikan dengan tinggi. Dengan mengubah kerucut menjadi kerucut miring tidak mengubah alas dan tingginya, sehingga tidak terjadi perubahan volume.

10. Perhatikan kerucut di samping. Jika segitiga ABC merupakan segitiga sama sisi dengan panjang sisi d cm, tentukan luas permukaan dan volume kerucut.

Demikian soal da jawaban buku siswa matematika kelas 9 latihan 5.2 tabung hal 293. Jika ada jawaban yang menurut Anda salah, Anda bisa memberi komentar pada blog ini. Jika ada kata yang kurang dipahami kami minta maaf. Semoga bermanfaat.