Tak Berkategori

Jawaban Buku Siswa Matematika Kelas 9 Latihan 5.1 Hal 280

November 16, 2019
446
Views

Jawaban latihan 5.1 tabung matematika kelas 9. Materi ini dapat ditemukan pada buku siswa matemtika kelas 9 mengenai tabung hal 280. Soal latihan ini terdiri dari 15 nomer yang berbentuk esai.

Soal dan Jawaban Latihan 5.1 Tabung

1. Hitung luas permukaan dan volume dari bangun tabung berikut ini:
 Jawaban:
a. Luas = 112π cm2
 d. Luas = 18π m2
 Volume = 160π cm3
 Volume = 8π m3
b. Luas = 182π cm2
 e. Luas = 24π m2
 Volume = 294π cm3
 Volume = 40π m3
c. Luas = 56π cm2 f. Luas = 164,5π dm2
 Volume = 48π cm3
 Volume = 245π dm3

2. Tentukan panjang dari unsur tabung yang ditanyakan

.
Ket: V = volume tabung, L = luas permukaan tabung, r = jari-jari tabung,
 t = tinggi tabung.
Jawaban:
a. t = 6 cm
b. t = 7 cm
c. t = 14 m
d. r = 11 cm
e. r = 15 cm
f. r = 7 m

3. Berpikir Kritis. Terdapat suatu tabung dengan jari-jari r cm dan tinggi tabung t cm, dimana r < t. Misalkan tabung tersebut memiliki volume V cm3 dan luas permukaan L cm2 . Apakah mungkin V = L?
Jika ya, tentukan nilai 1/r + 1/t
Jawaban:
Rumus luas permukaan tabung = 2πr(r + t)
Rumus volume tabung = πr2
t
Diperoleh
2πr(r + t) = πr2 t
2(r + t) = rt
1 2  1/r  + 1/t + = 111 r t 2

4. Tantangan. Gambar di samping merupakan suatu magnet t r1 r2 silinder. Alas dari magnet tersebut dibentuk dari dua lingkaran yang sepusat. Lingkaran yang lebih kecil memiliki jari-jari r1 = 4 cm, sedangkan lingkaran yang lebih besar memiliki jari-jari r2 = 6 cm. Tinggi dari magnet adalah t = 10 cm. Tentukan: a. Luas permukaan magnet. b. Volume magnet.
Jawaban:
 a. Luas permukaan = 2 × luas alas + luas selimut dalam + luas selimut luar
 = 2(π(r2 )2 – π(r1 )2 ) + 2πr1 t + 2πr2 t
= 2(π(6)2 – π(4)2 ) + 2π(4)(10) + 2π(6)(10)
= 40π + 80π + 120π
= 240π cm2
b. Volume = volume tabung besar – volume tabung kecil
= π(r2 )2 t – π(r1 )2 t
= π(6)2 (10) – π(4)2 (10)
= 200π cm3

5. Irisan Tabung. Misalkan terdapat suatu tabung dengan t r jari-jari r cm dan panjang t cm. Kemudian tabung tersebut dijadikan irisan tabung dengan memotong tabung tersebut menjadi dua bagian yang sama persis dari atas ke bawah. Tentukan rumus untuk menghitung luas irisan tabung tersebut.
Jawaban:
Petunjuk: Hitung semua luas permukaannya.
 L = πr(r + t) + 2rt

6. Tandon Bocor. Terdapat suatu tandon yang berbentuk tabung dengan jari-jari 50 cm tinggi 2 m. Tandon tersebut berisi air sebanyak ¾ dari volume total. Terdapat lubang kecil di dasar tandon tersebut yang menyebabkan air mengalir keluar dengan kecepatan 50 cm3 /detik. Air pada tandon tersebut akan habis setelah … detik? (anggap π = 3,14).
Jawaban:
Volume air= ¾π(50)2 (200) = ¾(3,14)(50)2 (200)
Waktu yang dibutuhkan = Volume / Kecepatan  3 (3,14)( 50)2 (200)/ 4(500) = 2.355 detik

7. Pondasi rumah. Alas dari pondasi rumah pak Ahmad berbentuk seperti gambar di samping. Jika tinggi pondasi adalah 2 m maka: a. tentukan luas permukaan pondasi, b. tentukan volume pondasi.
Jawaban:
Petunjuk: Hitung terlebih dahulu luas dari alas pondasi.
 Ubah satuan ke cm.
Luas alas = 30 × 30 – π(5)2 =( 900 – 25π) cm2
Volume = Luas alas × tinggi
 = (900 – 25π) × 200 = 180000 – 500π cm

8. Analisis Kesalahan. Rudi menghitung volume tabung dengan diameter 5 cm dan tinggi 12 cm. Rudi menghitung V = (12)2 (5) = 720 Sehingga diperoleh volume tabung adalah 720 cm3 . Tentukan kesalahan yang dilakukan Budi
Jawaban: Budi salah menggunakan rumus, seharusnya V = πr2 t. Selain itu Budi tertukar ketika mensubstitusikan nilai r dan t

9. Tabung miring. Pada gambar di bawah terdapat dua buah bangun sisi lengkung. Sebelah kiri merupakan tabung dengan jari-jari r dan tinggi t. Sebelah kanan merupakan bangun ruang sisi lengkung yang diperoleh dari tabung sebelah kiri dengan menggeser tutup ke sebelah kanan, selanjutnya disebut dengan tabung miring. Tabung miring tersebut memiliki jari-jari r dan tinggi t.
a. Tentukan suatu metode untuk mendapatkan rumus dari volume tabung miring tersebut.
b. Apakah volume rumus tabung miring sama dengan volume tabung? Jelaskan analisismu.
Jawaban:
 a. Salah satu metode adalah dengan membuat tumpukan koin yang membentuk tabung miring.
b. Sama, karena kaidah volume adalah luas alas dikalikan dengan tinggi. Dengan merubah tabung menjadi tabung miring tidak merubah alas dan tingginya, sehingga tidak terjadi perubahan volume.

10. Kaleng susu. Suatu perusahaan susu memiliki kotak susu ukuran 40 cm × 60 cm × 20 cm. Kapasitas maksimal kotak tersebut adalah 48 kaleng susu. Jarijari kaleng susu adalah r cm dan tingginya t cm. Perusahaan tersebut membuat peraturan: i. Nilai r dan t harus bilangan bulat. ii. Luas permukaan kaleng tersebut harus seminimal mungkin. Tentukan nilai r dan t.
Jawaban: Perhatikan gambar di bawah ini.


Gambar di atas merupakan alas kotak susu dengan ukuran 40 cm × 60 cm, tiaptiap persegi kecil berukuran 10 cm × 10 cm. Siswa dapat membuat lingkaran dengan jari-jari 5 cm (warna biru) atau dengan jari-jari 10 cm (warna merah).
• Ketika r = 5 cm, diperoleh 24 lingkaran. Karena kapasitas kotak tersebut adalah 48 kaleng susu, maka tinggi kaleng susu adalah t = 20 × ( 24/48 ) = 10. Diperoleh luas permukaan kaleng = 2πr(r + t) = 2π(5)(5 + 10) = 150π
• Ketika r =10 cm, diperoleh 12 lingkaran. Karena kapasitas kotak tersebut adalah 48 kaleng susu, maka tinggi kaleng susu adalah t = 20 × ( 12/48 ) = 5.Diperoleh luas permukaan kaleng = 2πr(r + t) = 2π(10)(10 + 5) = 300π Luas permukaannya minimal saat r = 5 cm, t = 10 cm.

Demikian jawaban latihan 5.1 tabung matematika kelas 9. Mohon maaf bila ada kata yang salah. Semoga artikel ini dapat bermanfaat.