Tak Berkategori

SOAL DAN PEMBAHASAN BUKU SISWA MATEMATIKA KLS 8 TAHUN 2019 HAL 145

Oktober 9, 2019
156
Views

SOAL DAN PEMBAHASAN BUKU SISWA MATEMATIKA KLS 8 TH. 2019 HAL. 145
1.  Manakah di antara persamaan  di bawah ini yang termasuk persamaan
      garis lurus ?
      a.  x + 3y = 0
      b.  x2 + 2y = 5
      c.  3y + 3x = 32
      d.  y/3 + 3x = 12
      e.   √4y + 3x – 6 = 0
      f.  y2 + x2 = 12
      Pembahasan:
      a.  x + 3y = 0
           Titik potong dengan sumbu-X maka y = 0
                 x + 3y = 0
                 x + 3(0) = 0
                 x + 0 = 0
                 x = 0
                 Jadi, titik potong sumbu-X adalah (0, 0)
             Titik potong dengan sumbu-Y maka x = 0
                  x + 3y = 0
                  0 + 3y = 0
                 3y = 0 – 0
                 3y = 0
                 y = 0
                 Jadi, titik potong sumbu-Y adalah (0, 0)
            Jika x = -3 maka   x + 3y = 0
                                          -3 + 3y = 0
                                           3y = 3
                                           y = 1    sehingga koordinatnya (-3 , 1)

            Jika titik (0, 0) dan (-3, 1) dihubungkan maka terbentuklah garis lurus dari persamaan
               x + 3y = 0  seperti gambar berikut ini

                         

            Jadi persamaan  x + 3y = 0  termasuk persamaan garis lurus


     b.  x2 + 2y = 5     

x
-2
-1
0
1
2
y
0,5
2
2,5
2
0,5
(x , y)
(-2 , 0,5)
(-1 , 2)
(0 , 2,5)
(1 , 2)
(2 , 0,5)
            
           Jika x = -2 maka    x2 + 2y = 5
                                          (-2)2 + 2y = 5
                                            4 + 2y = 5
                                            2y = 5 – 4
                                            2y = 1
                                            y = ½ = 0,5
           Jika x = -1 maka    x2 + 2y = 5
                                          (-1)2 + 2y = 5
                                            1 + 2y = 5
                                            2y = 5 – 1
                                            2y = 4
                                            y = 4/2 = 2
          Jika x = 0 maka    x2 + 2y = 5
                                         02 + 2y = 5
                                         2y = 5
                                          y = 5/2 = 2,5
          Jika x = 1 maka    x2 + 2y = 5
                                         12 + 2y = 5
                                         1 + 2y = 5

                                         2y = 5 – 1
                                         2y = 4

                                          y = 4/2 = 2
          Jika x = 2 maka     x2 + 2y = 5
                                         22 + 2y = 5
                                         4+ 2y = 5
                                         2y = 5 – 4
                                         2y = 1

                                                  y = 1/2   

            Jadi persamaan  x2 + 2y = 5  bukan  persamaan garis lurus

    c.   3y + 3x = 32 

x
-2
-1
0
1
2
y
5
4
3
2
1
(x , y)
(-2 , 5)
(-1 , 4)
(0 , 3)
(1 , 2)
(2 , 0,5)
            
           Jika x = -2 maka    3y + 3x = 32
                                          3y + 3(-2) = 9
                                          3y – 6  = 9
                                           3y = 9 + 6
                                           3y = 15
                                           y = 15/3 = 5
          Jika x = -1 maka     3y + 3x = 32
                                          3y + 3(-1) = 9
                                          3y – 3  = 9
                                          3y = 9 + 3
                                          3y = 12
                                           y = 12/3 = 4
          Jika x = 0 maka       3y + 3x = 32
                                          3y + 3(0) = 9
                                          3y + 0  = 9
                                          3y = 9
                                           y = 9/3 = 3

          Jika x = 1 maka       3y + 3x = 32
                                          3y + 3(1) = 9
                                          3y + 3  = 9
                                          3y = 9 – 3
                                          3y = 6  
                                           y = 6/3 = 2
          Jika x = 2 maka       3y + 3x = 32
                                          3y + 3(2) = 9
                                          3y + 6  = 9
                                          3y = 9 – 6
                                          3y = 3 

                                          y = 3/3 = 1 

                                       

              Jadi persamaan  3y + 3x = 32       termasuk persamaan garis lurus


    d.  y/3 + 3x = 12

x
-2
-1
0
1
2
y
54
45
36
27
18
(x , y)
(-2 , 54)
(-1 , 45)
(0 , 36)
(1 , 27)
(2 , 18)
            
                                          y/3 + 3(-2) = 12
                                          y/3 – 6 = 12
                                           y/3 = 12 + 6
                                           y/3 = 18
                                           y = 18 x 3 = 54
          Jika x = -1 maka     y/3 + 3x = 12 
                                          y/3 + 3(-1) = 12
                                          y/3 – 3 = 12
                                           y/3 = 12 + 3
                                           y/3 = 15
                                           y = 15 x 3 = 45
          Jika x = 0 maka      y/3 + 3x = 12 
                                          y/3 + 3(0) = 12
                                          y/3  + 0 = 12
                                           y/3 = 12
                                           y = 12 x 3 = 36

          Jika x = 1 maka      y/3 + 3x = 12 
                                          y/3 + 3(1) = 12
                                          y/3 + 3 = 12
                                           y/3 = 12 – 3
                                           y/3 = 9
                                           y = 9 x 3 = 27
          Jika x = 2 maka       y/3 + 3x = 12 
                                          y/3 + 3(2) = 12
                                          y/3 + 6 = 12
                                           y/3 = 12 – 6
                                           y/3 = 6
                                           y = 6 x 3 = 18

                                         

               Jadi persamaan  y/3 + 3x = 12     termasuk persamaan garis lurus

   f.   y2 + x2 = 12

x
-2
-1
0
1
2
y
2,8
3,3
3,5
3,3
2,8
(x , y)
(-2 , 2,8)
(-1 , 3,3)
(0 , 3,5)
(1 , 3.3)
(2 , 2,8)
            
           Jika x = -2 maka   y2 + x2 = 12
                                          y2 + (-2)2 = 12
                                          y2 + 4 = 12
                                          y2  = 12 – 4
                                          y2  = 8
                                          y = √8
                                          y = 2,8
          Jika x = -1  maka    y2 + x2 = 12
                                          y2 + (-1)2 = 12
                                          y2 + 1 = 12
                                          y2  = 12 – 1
                                          y2  = 11
                                          y = √11
                                          y = 3,3
          Jika  x = 0  maka    y2 + x2 = 12
                                          y2 + 02 = 12
                                          y2 + 0 = 12
                                          y2  = 12
                                          y = √12
                                          y = 3,5
          Jika  x = 1  maka    y2 + x2 = 12
                                          y2 + 12 = 12
                                          y2 + 1 = 12
                                          y2  = 12 – 1
                                          y = √11
                                          y = 3,3
          Jika x =  2  maka   y2 + x2 = 12
                                          y2 + (2)2 = 12
                                          y2 + 4 = 12
                                          y2  = 12 – 4
                                          y2  = 8

                                          y = √8
                                          y = 2,8
          Jika x =  3  maka    y2 + x2 = 12
                                          y2 + (3)2 = 12
                                          y2 + 9 = 12
                                          y2  = 12 – 9
                                          y2  = 3

                                          y = √3
                                          y = 1,7


                                                   

                   Jadi persamaan  y2 + x2 = 12 bukan persamaan garis lurus

2. Diketahui persamaan garis 2y = 3x – 6 lengkapilah tabel berikut
         

         Pembahasan:
                2y = 3x – 6

x
-4
-2
0
2
4
6
y
-9
-6
-3
0
3
6
(x , y)
(-4 , -9)
(-2 , -6)
(0 , -3)
(2 , 0)
(4 , 3)
(6 , 6)
            
                                          2y = 3(-4) – 6
                                          2y = -12 – 6
                                          2y = -18
                                           y = -18/2
                                           y = -9
           Jika x = -2 maka   2y = 3x – 6
                                          2y = 3(-2) – 6
                                          2y = -6 – 6
                                          2y = -12
                                           y = -12/2
                                           y = -6
          Jika x = 0 maka     2y = 3x – 6
                                         2y = 3(0) – 6
                                         2y = 0 – 6
                                         2y = -6
                                          y = -6/2
                                          y = -3
          Jika  x = 2 maka   2y = 3x – 6
                                          2y = 3(2) – 6
                                          2y = 6 – 6
                                          2y = 0
                                           y = 0
          Jika  x =  4 maka   2y = 3x – 6
                                          2y = 3(4) – 6
                                          2y = 12 – 6
                                          2y = 6
                                           y = 6/2
                                           y = 3
          Jika  x =  6 maka   2y = 3x – 6
                                          2y = 3(6) – 6
                                          2y = 18 – 6
                                          2y = 12
                                           y = 12/2
                                           y = 6
3. Gambarlah garis yang memiliki persamaan berikut.
     a. 2x = 6y
     b. 3x – 4 = 4y
     c. 4x + 2y = 6
     d. y + 3x – 4 = 0
     Pembahasan:
     a. 2x = 6y
x
-2
-1
0
1
2
y
-0,7
-0,3
0
0,3
0,7
(x , y)
(-2 , -0,7)
(-1 , -0,3)
(0 , 0)
(1 , 0,3)
(2 , 0,7)
            
           Jika x = -2 maka   2x = 6y
                                          2(-2) = 6y
                                          -4 = 6y
                                           y = -4/6  = -0,7
           Jika x = -1 maka   2x = 6y
                                          2(-1) = 6y
                                          -2 = 6y
                                           y = -2/6  = -0,3
           Jika x = 0  maka   2x = 6y
                                          2(0) = 6y
                                          0 = 6y
                                          y = 0
          Jika  x =  1 maka   2x = 6y
                                          2(1) = 6y
                                          2 = 6y
                                           y = 2/6  = 0,3
          Jika  x =  2 maka   2x = 6y
                                          2(2) = 6y
                                          4 = 6y
                                           y = 4/6  = 0,7
                                 

     
           b. 3x – 4 = 4y

x
0
1,3
y
-1
0
(x , y)
(0 , -1)
(1,3 , 0)
             
           Jika x = 0  maka   3x – 4 = 4y

                                          3(0) – 4 = 4y
                                          0 – 4 = 4y
                                          – 4 = 4y
                                          y = -4/4
                                          y = -1
          Jika y = 0  maka    3x – 4 = 4y
                                          3x – 4 = 4(0)
                                          3x – 4 = 0
                                          3x  = 0 + 4
                                          3x = 4

                                           x = 4/3 = 1,3  


                                   


           c. 4x + 2y = 6

x
0
1,5
y
3
0
(x , y)
(0 , 3)
(1,5 , 0)
            
           Jika x = 0  maka   4x + 2y = 6

                                          4(0) + 2y = 6
                                          0 + 2y = 6
                                          2y = 6
                                          y = 6/2 = 3
           Jika y = 0  maka   4x + 2y = 6

                                          4x + 2(0) = 6
                                          4x + 0 = 6
                                          4x = 6
                                          x = 6/4 = 1,5